
BSOD: Binary-only Scalable fuzzing Of device Drivers
Fabian Toepfer

fabian.toepfer@posteo.de
TU Berlin

Berlin, Germany

Dominik Maier
dmaier@sect.tu-berlin.de

TU Berlin
Berlin, Germany

ABSTRACT
Operating system code interacting with the devices attached to our
computers, device drivers, are often provided by their respective
vendors. As they may run with kernel privileges, this effectively
means that kernel code is written by third parties. Some of these
may not live up to the high security standards the core kernel
code abides by. A single bug in a driver can harm the complete
operating system’s integrity, just as if the bug was in the kernel
itself. Attackers can exploit these bugs to escape sandboxes and to
gain system privileges. Automated security testing of device drivers
is hard. It depends on the attached device, and the driver code is
not freely available. Dependency on a physical device increases
the complexity even further. To alleviate these issues, we present
BSOD, a fuzzing framework for high-complexity device drivers,
based on KVM-VMI. BSOD retargets the well-known and battle-
proven fuzzers, Syzkaller and AFL++, for binary-only drivers. We
do not depend on vendor-specific CPU features and exceed 10k ex-
ecs/sec on COTS hardware for coverage-guided kernel fuzzing. For
evaluation, we focus on the highly complex closed-source drivers
of a major graphics-card vendor for multiple operating systems. To
overcome the strict hardware dependency of device driver fuzzing,
making scaling impractical, we implement BSOD-fakedev, a virtual
record & replay device, able to load a full graphics card driver with-
out a physical device attached. It allows to scale fuzz campaigns
to a large number of machines without the need for additional
hardware. BSOD was able to uncover numerous bugs in graphics
card drivers on Windows, Linux, and FreeBSD.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
Binary-Only, Fuzzing, Virtualization, Kernel Space, Drivers

ACM Reference Format:
Fabian Toepfer and Dominik Maier. 2021. BSOD: Binary-only Scalable
fuzzing Of device Drivers. In 24th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID ’21), October 6–8, 2021, San Sebas-
tian, Spain. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3471621.3471863

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9058-3/21/10. . . $15.00
https://doi.org/10.1145/3471621.3471863

1 INTRODUCTION
If users without administrative rights were able to freely execute
kernel code on systems like Windows, Linux, or FreeBSD, they
could alter their permissions directly in kernel memory to regain
these rights. Hence, in major operating systems, kernel code has
a trust boundary, shielding it from normal applications and their
users. Still, the amount of code running in the kernel of a mod-
ern operating system is huge. While the core components of an
operating system are usually well-tested, a large zoo of additional
device drivers from various vendors runs within the kernel as well.
Since device drivers must interact with user-mode processes and
hardware devices, they open up a large attack surface. The drivers,
often implemented as kernel modules, have extensive control inside
the kernel, which means that bugs or other forms of misbehavior
can have a significant impact on the overall system stability. The
threat is present in real-world products. In the Linux kernel, device
drivers constitute the majority of vulnerabilities [16]. In the past,
vulnerabilities were also discovered in the closed sourced kernel
components of graphic drivers [4, 18, 25, 28].

Since drivers are usually written in low-level languages like C
and C++, they can contain high-severity bugs that could lead to
memory corruptions. To uncover these issues, the security commu-
nity had good success with fuzzing in recent years. Fuzzing ker-
nels, however, is a more complex task than the common userspace
fuzzing, since it involves running a full operating system [17]. Sev-
eral kernel fuzzing approaches exist that depend on hand-crafted
interface descriptions [11, 19] or utilize hardware-assisted coverage
feedback [33, 40], but to the best of our knowledge, no fuzzers for
complex closed-source device drivers, such as those of graphics
cards, publicly exist.

Most personal computers and laptops contain GPUs from ei-
ther NVIDIA, AMD, or Intel. The gaming platform Steam collects
monthly data about what kind of hardware their customers are
using, including the distribution of used GPUs by the vendor. Their
Hardware Survey1 from January 2021 states that 74.41% of users
use an NVIDIA hardware. All of these customers are likely to run
the official drivers to make full use of their hardware. A bug in one
of the drivers, therefore, can be abused to attack a large share of
the computing market.

To safeguard these drivers, we present BSOD, a framework that
allows to fuzz binary-only drivers. After a researcher gains enough
knowledge about the target’s interfaces, they can set up an AFL++
or Syzkaller fuzzing campaign for the real device, using device
passthrough. Then, they can record traces and replay them on other
machines to parallelize fuzzing through BSOD-fakedev. This virtual
device, together with a fast breakpoint-based coverage method orig-
inally proposed for userspace applications by Nagy and Hicks [27],

1https://store.steampowered.com/hwsurvey

https://orcid.org/0000-0002-5588-50081234-5678-9012
https://doi.org/10.1145/3471621.3471863
https://doi.org/10.1145/3471621.3471863
https://doi.org/10.1145/3471621.3471863

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

BSOD Fuzzer

AFL⁺⁺

 QEMU KVM

 Target OS Windows, Linux, FreeBSD, ...

Harness

Kernel

BSOD-fakedev
Record & Replay

Target Driver

Syzkaller

...

Either⇅

Using KVM-VMI:
- UnTracer
- Edge Coverage

Real Hardware
i.e. Graphics Card (PCI)

Either⇅

BSOD

Fuzz Input

Figure 1: BSOD overview: The supported fuzzers create inputs on the host system and gather, interact with QEMU/KVM using
KVM-VMI, and collect coverage feedback. The target OS executes each testcase against the driver, which either interacts with
real hardware, or with the BSOD-fakedev, a virtual replay of the real graphics card.

allow us to scale the fuzzing campaign to any hardware that can
run QEMU/KVM — without attaching a physical devices to all vir-
tual machines. Figure 1 depicts an overview of the components of
BSOD.

Contributions
• We develop and open-source BSOD, a framework for scalable
binary-only device driver and kernel fuzzing.
• BSOD includes hardware-agnostic untracer-style coverage
collection for kernels.
• BSOD allows fuzzing with AFL++ and Syzkaller. BSOD is the
first public use of Syzkaller for binary-only driver fuzzing.
• BSOD-fakedev is a virtual device that records and replays
PCI interactions. With it, we can load, and interact with,
complete graphics drivers.
• We fuzz the NVIDIA graphics drivers for Linux, FreeBSD,
and Windows, and uncovered multiple bugs.

2 BACKGROUND
Fuzzing is known to be an effective solution to uncover bugs by
executing generated inputs on target binaries [13, 34, 39]. Most re-
cent fuzzers rely on coverage information, which effectively guides
them through the program. Whenever a test case hits a previously
unseen program location, the fuzzer adds it to the corpus as a basis
for newly generated test cases [11, 39]. If the program’s source code
is available compilers can add instrumentation during the build pro-
cess [14, 34, 39]. For testing of binary-only targets, instrumentation
can be either achieved dynamically at run-time through emulation
with considerable overhead [39] or through binary rewriting [8].

In the following, we will further provide a quick introduction
to the attack surface in drivers in general, the case-study NVIDIA
driver in particular, as well as related work.

2.1 Kernel Driver Attack Surface
Device drivers are kernel modules and run in most privileged ring
0, which means they have full control over the system. A kernel
module can execute arbitrary code and has arbitrary read and write
primitives even for system-critical information that would render
any security mechanisms useless.

User-space applications that access the hardware devices need
to interface with the device drivers running in kernel space. For
this purpose, there exists the Input/Output Control (ioctl) system
call int ioctl(int fd, unsigned long cmd, ...);.

From an attacker’s point of view, system calls are an interesting
entry point since they allow executing code in kernel mode. Espe-
cially the ioctl system call provides a large attack surface since it is
generally defined so that the expected data and the correct handling
depend on the driver’s implementation. It has a high chance to con-
tain programming bugs that unexpected input data could trigger,
leading to memory corruption or unintended behavior. An attacker
could pass specifically crafted inputs to exploit these bugs to gain
higher privileges, perform arbitrary memory reads or writes, or
crash the system. When only proprietary device drivers are avail-
able for specific hardware devices, users have no other choice than
to trust the hardware vendor’s binaries. It is hard to know if these
trusted modules contain security bugs.

In our work, we focus on the scenario in which the attacker is
an unprivileged user that can access the driver’s device files. Most
components of the system have access to our target, the NVIDIA
drivers. Potential code execution in a fundamental driver like that
of a graphics card will, in most scenarios, grant an attacker full
kernel code execution.

While another possible source of untrusted data into the driver
can be the hardware device itself, we exclude it from this work.
Several systems [21, 29, 32] already covered this scenario.

2.2 NVIDIA Kernel Driver
In 2017, Google Project Zero [4] targeted the NVIDIA driver for the
Windows operating system and uncovered multiple bugs that reside
in the DxgkDdiEscape interface and in the exposed device nodes
that are accessible from user-mode applications. Even though, in
contrast to Windows, the Linux kernel is open source, the official
NVIDIA driver for Linux is proprietary, too. This means the kernel
components and the user-land implementations of the graphics API
standards are distributed in closed-source binary form.

The proprietary driver package supports a wide range of device
chips and generations. It consists of four kernel modules shown in
Figure 2 with their respective dependencies and licenses.

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

nvidia.ko nvidia-modeset.ko nvidia-drm.ko nvidia-uvm.ko
(NVIDIA) (NVIDIA) (MIT) (Dual MIT/GPL)

Figure 2: NVIDIA module dependencies on Linux

nvidia.ko. The main module comes with the closed-source bi-
nary nv-kernel.o_binary and only some source code needed to
interface with the running Linux kernel. When the driver is loaded,
it registers a control device and per GPU devices to be accessible
from user-mode applications via the device files /dev/nvidiactl
and /dev/nvidia0.

nvidia-modeset.ko. The module is responsible for retrieving and
setting the appropriate display properties by reading Extended
Display Identification Data (EDID) information from connected
display devices. It comes bundledwith another closed-source binary,
nv-modeset-kernel.o_binary, and source code to interface with
the kernel, similarly to the main module. It registers a control device
that is accessible via the device file /dev/nvidia-modeset from
user-mode applications.

nvidia-drm.ko. This module implements the Direct Rendering
Infrastructure (DRM) interface that is typically used by the X win-
dow system. DRM exposes device files under /dev/dri/card0 for
control and /dev/dri/renderD128 for rendering.

nvidia-uvm.ko. The module provides the unified virtual memory
feature to use a single memory address space accessible by CPU and
GPU, which is typically used by CUDA applications. It registers two
devices that are accessible via the device files /dev/nvidia-uvm
and /dev/nvidia-uvm-tools for user-mode applications.

According to our reverse engineering efforts, the drivers for all
platforms, Windows, Linux, and FreeBSD appear to share a single
codebase. For instance, when comparing the Linux and FreeBSD
driver installation packages, they have a similar structure and
include both the identical binary modules nv-kernel.o_binary
and nv-modeset-kernel.o_binary together with a few source
code that interfaces with the kernel. The Windows kernel driver
nvlddmkm.sys also shares similarities in some functions and the
included text strings.

2.3 Related Work
UnTracer. Coverage-guided fuzzers search for inputs that trigger

previously unseen code paths to increase the coverage. Statistically,
such inputs are typically infrequent since similar inputs often re-
sult in the same code paths. Unfortunately, the coverage tracing
overhead is always the same, and inputs considered uninteresting
are discarded.

To minimize the coverage tracing overhead while fuzzing, espe-
cially for the majority of uninteresting inputs, the authors proposed
an implementation called UnTracer [27]. For the approach, they use
two versions of the program under test, which are an interest oracle

and a tracer binary. The purpose of the interest oracle is to deter-
mine whether a test case reached a previously unseen code location
in the program. It’s realized as a modified binary with inserted
software breakpoints at the start of every basic block. Whenever a
breakpoint triggers, the respective test case will be re-executed on
the tracer binary with full coverage tracing enabled. Afterward, the
system removes the breakpoints of all reached basic blocks from
the interest oracle. To realize the concept, the authors created a
customized version of AFL that generates the test cases for the
interest oracle. The benchmarks have shown that this approach
outperforms AFL’s QEMU mode [39] and reaches nearly identical
performance compared to fuzzing with Intel PT. Encouraged by
these positive results, we implemented UnTracer-style coverage for
BSOD.

RetroWrite. RetroWrite [8] is a method to add instrumentation to
binaries to support AFL or ASAN through binary rewriting. It allows
performing security analysis like fuzzing on closed-source targets.
Binary rewriting is an involved process that requires recalculating
and updating all pointer offsets so that the binary still executes
correctly. The difficulty is to distinguish between reference and
scalar constants. In our tests using NVIDIA’s drivers, RetroWrite
could not produce a usable kernel module. This is not surprising,
given the scope of the driver.

kAFL. kAFL [33] is a kernel fuzzer formultiple operating systems
that leverages Intel PT for hardware-assisted coverage feedback.
It uses the KVM hypervisor and QEMU [2] to emulate the target
operating system, in which the fuzzing takes place. To trace the
guest VMs exclusively, they created customized versions of the
KVM kernel component, namely KVM-PT, and the user-space sys-
tem emulator QEMU, namely QEMU-PT. The KVM-PT component
enables and disables the tracing via the host’s CPU MSR registers
on VM-Enter and VM-Exit calls, respectively. Inside the guests,
specific agent programs wait for test cases and trigger the fuzzing
loop. The way BSOD interacts with AFL++ resembles the concepts
of kAFL. However, we chose UnTracer-style coverage collection
over Intel PT, to be able to also fuzz drivers that only run on AMD
CPUs, where Intel PT is not available, as well as to be able to scale
to servers with ease.

Agamotto. Many techniques for fuzzing kernel-mode drivers
exist, but most of them involve performance issues due to costly ex-
ecution of kernel code, interference of test cases, or kernel crashes.
Agamotto [36] introduces lightweight virtual machine checkpoints
to improve the throughput of kernel driver fuzzing. Based on the ob-
servation that fuzzers frequently execute similar test cases in a row,
the authors improved the performance by continuously creating
checkpoints during the fuzzing execution and skipping identical
parts of other test cases by restoring related checkpoints. Agamotto
increased the speed of Syzkaller [11] by 66,6% on average when
fuzzing 8 USB drivers, whereby it skipped 35,6% of test case execu-
tions. Additionally, the approach achieved a speed improvement of
21,6% when fuzzing PCI drivers with AFL [39].

Unicorefuzz. Unicorefuzz [24] allows the fuzzing of code in ker-
nel space by leveraging CPU emulation based on the Unicorn en-
gine. The setup uses QEMU [2] for the creation of the initial system
state, AFL’s Unicorn mode [13] for fuzzing, and Avatar2 [26] for

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

interaction with QEMU’s exposed GDB stub. The system creates a
breakpoint for that address so that the VM halts once the breakpoint
gets triggered. After hitting the start address, the system synchro-
nizes the CPU’s state of the VM with the Unicorn engine that starts
fuzzing the code right after the breakpoint. This methodology also
allows to fuzz initialized drivers, albeit without further hardware
interaction. On top, the emulated execution speed is rather low [24].

Difuze. Difuze [7] is a framework for interface recovery of kernel
drivers for the Android platform. Its purpose is to enable interface-
aware fuzzing on the ioctl interface of device drivers. The command
and data structures of ioctl system calls are driver-dependent and
can contain multiple pointers and substructures. From a security
perspective, it has a high chance of containing vulnerabilities. To
trigger deeper code paths these structures need to be valid, which
requires meaningful fuzzing input choices. Otherwise, the target
would likely early reject the inputs without reaching interesting
program locations that might contain bugs. To extract the data
structures, Difuze applies static code analysis of kernel drivers that
requires to have access to the source code. Since the target devices
are mobile devices running Android that contain vendor-specific
hardware, such as GPS sensor, accelerometer, or camera, they have
to include their drivers into the kernel tree that vendors must
publicly release thanks to the GPL license. The process consists
of three steps that are interface recovery by static analysis of the
kernel source code, structure instance generation based on the prior
extracted information, and execution of the generated instances on
the actual device.

P2IM. Feng et al. proposed P2IM [12], a firmware rehosting
framework. P2IM abstracts peripherals and handles firmware I/O
to rehost the firmware of embedded devices fully automated. It
enables peripheral-oblivious emulation and can be used to fuzz
firmware of embedded devices with AFL. Of the 70 firmware and 10
real devices, P2IM managed to executed 79% of the sample firmware
without any manual assistance.

avatar2. Avatar2 [26] is a multi-target orchestration framework
that allows dynamic analysis of embedded firmware images. Avatar2
provides interoperability between different dynamic binary anal-
ysis platforms, emulators, debuggers, and real hardware devices.
The analyst can define topologies and specify events to transfer
the state of the memory and CPU registers from one system to
another. Partial emulation is achieved by executing the firmware
via an emulator and forwarding the memory-mapped peripherals
to the real hardware devices.

USBFuzz. USBFuzz [29] is a framework that targets the fuzzing
of USB drivers inside QEMU [2]. Since hardware devices become
costly when larger fuzzing campaigns require multiple instances,
the authors created an emulated software USB device, configurable
to imitate different USB devices by specifying device and vendor IDs.
This allows drivers to recognize and bind the devices to properly
initialize and operate. With this approach, the fuzzing scales way
better, and the utilization of the system’s resources is more efficient.
The fuzzer operates from the device side, which means the device
responds to requests with fuzzing inputs. To retrieve coverage
feedback for Linux, the approach uses an instrumented kernel built
with KCOV and KASAN features enabled, which limits coverage

feedback to open-source drivers. Although the work targets USB
devices, the approach shares similarities with our work. Instead of
creating an emulated USB device, we need an emulated PCI device
for improving the fuzzing process. Furthermore, our work is not
limited to open-source drivers to retrieve coverage feedback and
supports closed-source targets.

Periscope. PeriScope is a Linux kernel based probing framework
that allows fine-grained analysis of device-driver interactions [35].
It allow researchers to monitor and log traffic between device dri-
vers and hardware. On top of it, the authors built PeriFuzz, a fuzzer
that is able to fuzz device drivers from the device side, uncover-
ing bugs that can be exploited to exploit the kernel from rogue
devices. The fuzzer found 15 unique vulnerabilities in the Wi-Fi dri-
vers of two flagship Android smartphones, including 9 previously
unknown ones.

3 BSOD DESIGN
BSOD is a framework to fuzz complex binary-only kernel device dri-
vers using AFL++ and Syzkaller. It works for drivers with forwarded
hardware devices, and offers the option to replace the hardware
device with a virtualized record & replay device, BSOD-fakedev
altogether. To make it cloud-friendly, we do not rely on strong hard-
ware dependencies, like Intel PT. In this section, we will present
BSODs design.

Host

Hardware

Kernel

User space

CPU Memory PCI Device

KVM VFIO

QEMU

Guest

Hardware VFIO DevicevCPU Memory

Kernel Target
Driver

User space Harness

syz-bp-cov

syz-manager

VMI

AFL BSOD

Figure 3: Detailed interactions of BSOD’s components.

Figure 3 depicts an overview of the experimental environment
used to analyze kernel drivers in conjunction with real hardware de-
vices during our work. It uses virtualization-based on QEMU’s full-
system emulation [2] with Kernel-based Virtual Machine (KVM)
acceleration to drive a guest running an operating system with
native performance. To make physical hardware devices available
inside the guest, we pass through host devices with the help of
Virtual Function I/O (VFIO). To fuzz with BSOD the analyst has to
determine how applications interact with target and what kind of
data the driver expects as a one-time manual effort. To reveal the
needed information, we trace the interactions and data exchanged
between exemplary applications, the drivers, and the devices. Af-
terward, we inspect the collected data traces to infer parts of the

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

b2

b1

b5

b3

b4

e1

e2

e3

e4

e5
e6

e7

Figure 4: Control-flow graph extracted with GHIDRA [1]

drivers’ functionalities and use these insights to set up the fuzzing
procedure. As a final step, BSOD can eliminate the hardware de-
pendency.

In the following, we introduce the used concepts. BSOD connects
to our experimental environment by using libvmi [22], a library
that provides an introspection API for different hypervisors. For the
KVM hypervisor, the KVM-VMI [37] project forms the basis, which
combines the KVM kernel module, QEMU, libkvmi, and libvmi.
For the practicability of our setup, we modified the libvmi library
to be usable without the libvirt virtualization API in between.

Since we cannot instrument binary-only drivers through recom-
pilation, we need to establish a different way of getting coverage
information.

1 void foo (char ∗ i npu t) {
2 i f (i npu t [0] == 'A ') {
3 i f (i npu t [1] == ' B ') {
4 i f (i npu t [2] == 'C ') {
5 c r a sh = 1 ;
6 }
7 }
8 }
9 }

Listing 1: Exemplary program source code

Control-Flow Tracing. Listing 1 shows exemplary program source
code and Figure 4 the related Control-Flow Graph (CFG) of the com-
piled binary. To trace the program flow during execution, we must
determine the successive basic block when the CPU encounters
a conditional control-flow instruction. In this example, the tracer
replaces the first byte of the JNZ instructions at the offsets 0x112a,
0x1139, and 0x1148 with 0xcc. When reaching one of these code

locations, the tracer receives an interrupt to determine the follow-
ing executed block, which depends on whether the branch will be
taken or not that can be tracked by executing a single step. Before
continuing execution, the tracer restores the original instruction
byte to execute normally. The tracing of all the block transitions
during the program’s execution reveals the full path through the
CFG.

Edge Coverage Mode. Tracking individual branches instead of
only basic blocks is the coverage method of choice, where avail-
able [13]. In the following, we will explain how we implement edge
coverage mode in BSOD.

(1) Preprocess target module
In the first step, we preprocess the .text section of the target
kernel module to extract all the offsets of conditional control-flow
instructions and both possible target basic block addresses into a
file. We use capstone [31] to disassemble the binary module. This
step is only needed once per target module.
(2) Initialize fuzzing environment
Then, the guest VM is booted, and the target kernel module is loaded.
The beginning of the module’s .text section in memory is deter-
mined by reading the module’s load address from /proc/modules.
Afterward, BSOD starts and takes the module load address and the
file containing the extracted offsets of control-flow instructions as
arguments. It connects to the introspection API, pauses the VM, and
registers two events, namely BREAKPOINT, which triggers whenever
encountering an INT 3 breakpoint exception and SINGLESTEP that
triggers after executing an instruction in single-step mode. Then, it
will back up and replace the first byte of every control-flow instruc-
tion according to the previously extracted offsets with a software
interrupt. The VM will be resumed afterward and is prepared for
the harness to start.
(3) Execute test case
Whenever a software interrupt occurs during the execution of the
target function, BSOD catches and handles it according to the al-
gorithm shown in Figure 4, in which M refers to the memory, B
refers to the instruction backups, and COV refers to the collected
coverage. It reads out the address of the encountered control-flow
instruction of the CPU’s RIP register and restores the 0xcc byte to
the saved opcode. When the current Process ID (PID) belongs to
the harness, the CPU is switched into the single-step mode to trace
which of the two possible paths are taken. After the single-step,
BSOD receives an interrupt again and reads the new RIP of the CPU.
The module load address is subtracted from both addresses to main-
tain consistent coverage information across reboots. Subsequently,
both basic block addresses are linked using XOR to represent the
edge and reported to the fuzzer.

UnTracer-Style Block Coverage Mode. Nagy and Hicks [27] show
a method to get reasonably fast performance metrics out of purely
breakpoint-based instrumentation if the fuzzer applys smart tracing.
In their measurements, removing hit breakpoints after the first hit
still performed well for coverage guided fuzzing, while reaching
near-native execution speed after a while. Inspired by the presented
fuzzer UnTracer for user-mode applications, we adapted the method
for fuzzing modules in kernel space.

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

Algorithm 1 Breakpoint coverage
while wait for new event do

event ← readevent
if event == breakpoint then

M[rip] ← B[rip]
if pid == tracepid then

sinдlestep ← true
COV ∪ rip − base ⊕ prev_loc − base
prev_loc ← rip

end if
else if event == sinдlestep then

M[prev_loc] ← 0xcc
sinдlestep ← f alse
COV ∪ rip − base ⊕ prev_loc − base
prev_loc ← rip

end if
end while

We modified the described edge coverage mode above to reduce
the amount of reoccurring interrupts that are costly to handle and
consequently lower the tracing accuracy to improve the fuzzing
throughput. Here, BSOD sets breakpoints on the offsets of control-
flow instructions and both reachable basic blocks. Whenever a
breakpoint triggers, it reports the current RIP register for coverage
feedback but omits the reinjection of the breakpoint so that it only
triggers once.

Therefore, the granularity of the coverage feedback per test
case reduces to previously unseen basic blocks, which lowers the
number of inputs considered interesting. For example, when an
input encounters a new edge whose origin and target blocks were
already reached previously, it can not be spotted as new interesting
behavior.

3.1 BSOD-AFL
We implemented an AFL++ proxy [13] that integrated AFL++ into
BSOD using libvmi. Initially, it was derived from the kernel-fuzzer-
for-xen [23] project and retargeted for KVM. Figure 3 shows the
overall system overview of the fuzzing setup. The host system runs
AFL and QEMU, while the fuzzing takes place in the guest system,
which runs the target kernel module. Based on the collected in-
formation, the analyst must create a target-specific harness that
implements the respective API functions to fuzz. Listing 2 shows
the minimal harness boilerplate code. At first, the harness allo-
cates a buffer and issues a hypercall to share the buffer’s address
and length. We implemented the hypercalls as software interrupts
with prepared register values, which are handled by BSOD accord-
ingly. The rax register contains a specific magic value that encodes
the command, and the registers rbx and rcx hold the arguments
that are the address and length, respectively. BSOD translates the
buffer’s virtual address to the physical address through page-table
lookup. After starting the harness inside the guest, it will first allo-
cate a buffer and share the address and length via a hypercall. Since
the scheduling of other processes can happen while a whole oper-
ating system is running, it could be possible that other processes
hit breakpoints during the execution of a test case. To ensure to

collect only the related coverage of the harness, BSOD determines
the respective PID of the current process by reading it from the
struct task_struct. Afterward, the harness enters the fuzzing
loop and issues at first in every iteration a hypercall to request
a new test case into the created buffer. Then, it calls the target
function and fills the arguments with the buffer’s content.

We create breakpoints at the basic block addresses of the Linux
kernel error handlers, such as oops_begin, panic, and kasan_
report to detect faults that we report to AFL. When the system has
to halt due to a critical fault, the VM needs to reboot and initialize
again to continue the fuzzing process.
1 # include < s t d l i b . h>
2 # include < s t r i n g . h>
3
4 #define HYPERCALL_BUFFER 0 x1337133713371338
5 #define HYPERCALL_TESTCASE 0 x1337133713371337
6 #define LENGTH 0 x10000
7
8 in t main (in t argv , char ∗ ∗ a rgc) {
9 / / A l l o c a t e i n p u t b u f f e r
10 char ∗ b u f f e r = ma l l oc (LENGTH) ;
11 memset (bu f f e r , 0 , LENGTH) ;
12
13 / / H y p e r c a l l t o s i g n a l b u f f e r a d d r e s s and l e n g t h
14 asm (" i n t $3 " : : " a " (HYPERCALL_BUFFER) , " b " (b u f f e r) , " c " (LENGTH)) ;
15
16 / / F u z z i ng l o o p
17 while (1) {
18 / / H y p e r c a l l t o r e q u e s t new t e s t c a s e
19 asm (" i n t $3 " : : " a " (HYPERCALL_TESTCASE)) ;
20
21 / / C a l l t a r g e t f u n c t i o n
22 t a r g e t _ f u n c t i o n (b u f f e r) ;
23 }
24 }

Listing 2: BSOD-AFL Harness boilerplate

3.2 BSOD-Syzkaller
Syzkaller [11] is a system call kernel fuzzer, predestined in the
context of device driver fuzzing on the ioctl interface. It uses virtu-
alization, based on QEMU [2], to run one or multiple worker guests
in which the fuzzing takes place.

When the fuzzer inside the guest executes a program that reaches
new program locations, according to coverage, it gets re-executed
multiple times to verify functionality, reduce noise, and minimize
the testcase, in the so-called triage phase. The minimized program
and the coverage information are sent to the manager on the host.
The manager adds the new program to the input corpus from which
the fuzzer subsequently generates the programs through mutation
of the parameters and updates the overall reached coverage. The
reached basic block addresses are mappable to the respective source
code lines of the kernel image.

In the case of closed-source targets, the common KCOV kernel
feature can not provide coverage information for binary modules.
To overcome this hurdle, we hook up BSOD as new coverage source,
that prototypically emulates the functionality of KCOV based on
software breakpoints in a very similar way to the setup described
in subsection 3.1.

BSOD includes a tool named syz-bp-cov to run alongside the
Syzkaller manager on the host. It also relies on the introspection
capabilities of VMI to receive interrupts and to access the guest’s
memory. We modified the libvmi library and removed the libvirt de-
pendency, an extensive virtualization API, for seamless integration
in Syzkaller, since the manager unit already controls the QEMU
processes. We extended the startup routine of Syzkaller to start the
tool before it executes the fuzzer inside the guest. In the first step,

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

the tool connects to the introspection API of the guest VM and
replaces the target’s control-flow instructions with software break-
points those offsets also require to be extracted beforehand. In the
next step, it registers the two events BREAKPOINT and SINGLESTEP
that are used for control-flow tracing according to Figure 4 from
the first setup.

We modified the Syzkaller executor in terms of dropping out the
interactions with the KCOV interface. Instead, it allocates a cover-
age buffer and signals its memory location via a hypercall realized
as a software interrupt with prepared register values. Whenever
the CPU reaches a breakpoint during the execution of a Syzkaller
program, the basic block address is reported according to the cur-
rent RIP register value and written into the dedicated coverage
buffer at the position of the current size value that is increased
afterward. Since the module load addresses vary across reboots, the
tool rebases the reached basic block addresses into a fixed address
range per module. To avoid having to manage coverage buffers for
each thread and the corresponding mapping for each basic block
reached, the experimental setup is limited to a single fuzzer process
that runs in non-threaded mode per VM.

In BSOD-Syzkaller, reached breakpoints are not reactivated and
only trigger once, which requires some changes to the Syzkaller
logic. Since Syzkaller typically uses edge coverage that chains two
successive basic blocks together, it would likely create edges de-
pending on the state of enabled breakpoints that are not existing.
This effect influences the assessment of whether an input triggers
new behavior and is added to the corpus. To solve the problem, we
modified Syzkaller to use block coverage that lowers the accuracy
to maintain correct functionality. Consistent coverage feedback is
required to function correctly to keep the triage phase intact for
inputs that reach new program locations. Therefore, when entering
this phase, the fuzzer issues a hypercall dedicated to syz-bp-cov. It
activates all breakpoints again and continuously reactivates them
when they are triggered so that it traces the full set of reached basic
block addresses accordingly until the fuzzer leaves the triage phase
and signals it via another hypercall. Fuzzing with Syzkaller requires
the tester to provide interface descriptions for the target.
1 r e s ou r c e f d _ n v i d i a c t l [f d]
2 o p e n a t $ n v i d i a c t l (f d con s t [AT_FDCWD] , f i l e p t r [in , s t r i n g [" / dev / n v i d i a c t l "]] ,

f l a g s f l a g s [op en_ f l a g s] , mode con s t [0]) f d _ n v i d i a c t l
3 ioctl$NVRM_IOCTL_CREATE (fd f d _ n v i d i a c t l , cmd con s t [0 xc020462b] , a rg p t r [inout

, n v rm_ i o c t l _ c r e a t e _ t])
4
5 n v rm_ i o c t l _ c r e a t e _ t {
6 c i d i n t 3 2 (in)
7 par i n t 3 2 (in)
8 hand le i n t 3 2 (i nou t)
9 c l s i n t 3 2 (in)
10 p t r p t r 6 4 [in , i n t 3 2]
11 s t a t u s i n t 3 2 (out)
12 _pad i n t 3 2
13 }

Listing 3: Syzkaller ioctl system call description

Based on recovered ioctl structures, the creation of equivalent
Syzkaller descriptions is straightforward, exemplary shown in List-
ing 3. The first line defines a resource to hold the file descriptor of
the device node, which will be opened in the next line. The third
line defines an ioctl system call according to the function definition
which takes the file descriptor, the cmd parameter, and a pointer
of an expected parameter structure as arguments. The definition
of the parameter structure starts from the fifth line, and each line
between the brackets defines a field with name and type.

4 PCI DEVICE RECORD & REPLAY
Fuzzing of device drivers requires running an operating system
containing a supported hardware device so that the target driver
can initialize and operate. Unfortunately, when fuzzing with physi-
cal hardware devices via PCI passthrough, it requires one separate
device for each guest, in which the fuzzing takes place. Further-
more, the fuzzer could trigger operations that bring the device into
an unstable state or even break it. To overcome these issues, we
create a QEMU virtual device, able to replay large parts of the real
PCI devices. It enables fuzzing execution on systems that do not
include the physical device and allows scaling up using virtualiza-
tion technology to utilize all the system resources more efficiently.
Several similar attempts address this issue for different hardware
families.[6, 15, 29, 30, 41]

4.1 PANDA-based Deterministic Recordings
Analyzing any driver behavior in full-system emulation involves
challenges due to the nondeterminism of the operating system and
the hardware, due to the state differences of the OS and the physical
device, the memory addresses, order of MMIO operations, interrupt
timings, and context switches change.

Non-Determinism Hinders Fuzzer Development. As valuable im-
provement during development, we eliminate non-determinism
by recording the execution of the operating system for repeatable
analysis on top of PANDA, a QEMU-fork [10]. We can use the
QEMU’s VFIO device to pass through real hardware devices to
PANDA. When starting a recording, PANDA relies on the snap-
shot capabilities of QEMU, which require devices to be migratable,
but migration is not possible with the VFIO device. We defined
the device to be migratable so that it is added to the snapshot and
stubbed out the device initialization routines that are called when
a snapshot is loaded. With these changes in place, the record and
replay capabilities of PANDA with the VFIO device are working
as expected for MMIO operations and interrupts, except for DMA
transfers. Virtual devices typically use a specific function to map
memory for DMA transfers, and PANDA adds these addresses to
the watchlist. This method does not work for real hardware devices,
which means the DMA pages need to be collected differently.

BSOD Panda Plugins. To cover the recording of the missing DMA
operations without customizing PANDA itself, we implemented a
PANDA plugin. During recording, the plugin tracks the allocated
DMA pages by using PANDA’s memory callbacks [10]. The plugin
directly hooks the functions responsible for allocating the DMA
buffers inside the kernel driver module to retrieve the page ad-
dresses. Furthermore, an event is registered that triggers before
any memory read access occurs by using the PANDA_CB_PHYS_MEM_
BEFORE_READ callback. Whenever a read access relates to a moni-
tored DMA page, the plugin checks whether the content changed by
comparing the checksum of the current bytes with the previously
stored checksum. If the content is changed, the page is dumped
and stored together with the current instruction counter. During
replay, the plugin also uses the previously used callback to write
changed pages due to DMA just-in-time before the driver accesses
the data according to the stored instruction counter. This eliminates
nondeterminism and improves debugging by having GDB attached

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

0x10

0x10

0x10 0x41 0x41 ...0x64

0x10 0x10

0x10 0x20 0x20

0x10

...

...r/o

r/w

seq

R 0x10 W 0x20 R 0x10

R 0x10 W 0x20 R 0x20

R 0x10 W 0x20 R 0x41

Figure 5: Memory replay

during replay. Furthermore, it enables the use of expensive analysis
plugins that no longer influence the execution.

Next, we created a plugin that intercepts ioctl system calls di-
rected to the driver. It is realized by hooking the related ioctl handler
function in the driver to dump the request parameters and passed
data structures of any performed ioctl system call during the replay
into files. It also supports taint analysis [9, 38] by labeling the input
bytes to the ioctl system call invocation to track the propagation of
the data. We can determine the influenced program locations by
using the tainted branch and tainted instruction plugins.

4.2 BSOD-fakedev
To remove the hardware device dependency for the fuzzing process,
we implement a virtual replay device, BSOD-fakedev, that can be
plugged into any QEMU instance. We determine the properties by
reading out the PCI configuration space of the device. The lspci
utility allows showing the information in a human-friendly readable
format. First, we determine the values for the vendor ID, device ID,
and class ID, and specify them in the class properties of our device
implementation. Then, we must determine the layout of the Base
Address Registers (BARs) with its sizes and access properties. In
our QEMU device implementation, we define appropriately sized
memory areas and IO operations for each BAR. Afterward, we
define an IO memory region for each BAR with the respective size
and IO operations by usingQEMU’s defined memory_region_init_
io function. Furthermore, we define the BAR for our device with
the respective access types and bind it to the respective memory
region by using QEMU’s pci_register_bar function.

At this point, we have created our virtual device according to the
device properties without implementing any functionality. For the
handling of memory events, we need to implement the handlers of
the IO operations for read and write accesses. To approximate the
device’s functionality, we implement a memory replay logic that
works on previously captured trace data. We define the memory
access length to 4 bytes and classify each addressable memory
location to be either of type read-only, read-writable, or sequential.

To demonstrate the concept, Figure 5 shows an exemplary ex-
cerpt of device memory. For read-only memory locations, our imple-
mentation discards any writing attempt so that they will always re-
main the initial value. Read-writeable memory locations are treated
as typical memory and served from the allocated memory areas
of the virtual device. For memory locations of type sequential, we
implemented a special treatment that serves read accesses with
sequential data. Here, successive read events return the values ac-
cording to the previously captured trace data, and write attempts
are discarded. Interrupts are bound to the previously occurred read
or write event and triggered after the event occurred.

We link our implementation to the handler functions of the
IO operations for the memory regions. The handler functions are
extendable to implement more device-specific custom logic, which
is useful when the replay concept does not work for single memory
addresses.

For the data collection, we use our presented experimental setup
shown in Figure 3 in section 3. We use the VFIO device, located
between the physical device and the guest, as a proxy to intercept
Memory-Mapped I/O (MMIO) events and interrupts by leveraging
its tracing capabilities. We set the VFIO option x-no-mmap=true,
which disables the direct mapping of the device memory regions
into the guest to enable the trace events vfio_region_read and
vfio_region_write that trigger on each memory access into the
BARs. Furthermore, we enable the option x-no-kvm-intx=true
to collect interrupts in KVM mode. Then, we boot our virtual ma-
chine and trigger device actions, such as executing an exemplary
application that interacts with the device.

Afterward, we analyze the trace data in the following way:

(1) Preprocess trace data
In the first step, we parse the QEMU trace log and extract
the data of the occurred memory and interrupt events.

(2) Split memory regions
In the next step, we split the preprocessed events into the
respective memory regions.

(3) Extract initial RAM image
Then, we extract an initial RAM image for every memory
region. For each memory address, the value of the first read
event indicates the initial value.

(4) Identify register types
In the following, we assign the appropriate class for each
memory address of the memory region.
Read-Only: We consider a memory address read-only when
the read value never changes throughout the trace for that
region, regardless of whether there were write accesses with
different values to the address.
Read-Writable: We consider a memory address read-writable
when the read value always represents the last written value.
Sequencial: We consider a memory address sequential when
we observe two successive read events that return different
values or when we notice a read value that does not reflect
the last written value to that address.
We consider memory addresses that don’t appear in the trace
data as read-writeable.

After we have specified the device properties and prepared the
trace data, we can add the virtual device model via the QEMU
command line as a replacement for the VFIO device. The device
model will prototypically act as the physical device while it serves
memory read and write operations and interrupts according to the
traced data. Read-only memory locations can hold fixed data, such
as device properties or binary data like the BIOS. More interestingly,
they could implement some functionality that is triggered when
they are written with a specific value but effectively, from amemory
perspective, not store the value. Read-writeable memory locations
are independent of the captured trace data and could diverge across
executions when they are not related to the sequential registers.

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

Memory locations identified as sequential could implement coun-
ters or timers, provide status information, or deliver data streams
similar to pipes.

A simple device model and replay will never accurately emulate
the full functionality of a complex device like the graphics card.
Different branches in the driver may lead to non-recorded behavior.
Nevertheless, it is sufficient to drive deterministic parts properly,
such as driver initialization and other functionalities, as long as
the read access event order remains the same for the sequential
addresses. Therefore, we must verify our findings whether they
also occur with the physical hardware device.

5 EVALUATION
During this chapter, we evaluate our presented fuzzing approaches
by creating different experiments. The results of the experiments
respond to the following questions:

(1) Performance
What are the fuzzing throughput and reached coverage achieved
of both approaches?

(2) Scaling
How well do the approaches scale to make efficient use of
available system resources?

(3) Findings
Can real-world bugs be found with the approaches?

(4) Emulated device model
Does the achieved coverage differ when using the device
model compared to the physical hardware device?

We performed the evaluation on a host system with an Intel Core
i5-4570 and 8 GB RAM across the experiments. The QEMU guests
are started with the options -cpuhost,kvm=off,migratable=off
and -snapshot. The host option specifies to copy the host’s CPU
configuration, which is best practice and results in the highest
performance [5].

Harnessing NVIDIA drivers for BSOD. The NVIDIA driver per-
forms simple hypervisor detection and refuses to initialize for de-
vices that are not certified to run virtualized. It is actually no tech-
nical restriction since the more expensive device counterparts are
using the same chipsets. We hide the KVM hypervisor by using the
kvm=off option to bypass the virtualization detection of the driver.

By default, QEMU ensures themigratability of guest VMs, whereby
incompatible CPU features are turned off and lower the possible
performance. It enables creating snapshots of the VMs that could be
loaded for quick initialization and state restore when crashes occur.
However, we decided to set the migratable=off flag to disable
this feature in favor of higher throughput and take the costs of re-
initialization by rebooting the guests. Furthermore, when fuzzing
with real hardware via the VFIO device, migration is not supported
anyway, which would prevent comparability during the evaluation.

The -snapshot option allows using the file system in a copy-on-
write manner, which effectively discards any performed changes
during the execution after stopping the guest. Another advantage
of this option is the ability to boot multiple Virtual Machine (VM)
instances using the same file system image [5].

For interface recovery, we utilized available information from
the envytools [20] repository together with tracing and analyzing
exemplary applications.

0

20000

40000

60000

80000

100000

120000

140000

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

ex
ec
s

time

kcov

bp-block

bp-edge

Figure 6: Syzkaller fuzzing executions for KCOV/bp-
edge/bp-block coverage modes.

0

1000

2000

3000

4000

5000

6000

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

th
ro

ug
hp

ut
 in

 e
xe

cs
/m

in

time

kcov

bp-block

bp-edge

Figure 7: Syzkaller fuzzing throughput for KCOV/bp-
edge/bp-block coverage modes.

Based on the information, we created a test-harness for AFL and
use the collected ioctl data structures extracted from an exemplary
execution replay as meaningful initial test cases.

For Syzkaller, we have to provide the target’s system call in-
terface descriptions by transforming the previously implemented
structures for the harness into equivalent Syzkaller descriptions.

For both setups, we start the fuzzing guests with either the
physical hardware device using PCI pass-through via VFIO, or with
the derived device model, to bring the driver into a working state.

Table 1 shows our test matrix of targets per fuzzing setup and
operating system. For Linux, the fuzzing has been performed inside
guests, running an at the time of writing up-to-date installation of
Arch Linux together with a custom kernel where we enabled Kernel
Address Sanitizer (KASAN) to identify memory corruption bugs
in kernel space. We installed the target NVIDIA kernel modules
via the nvidia-dkms package, which builds the most recent driver
version 460.56 against the running kernel. We configured the guest
to print kernel logs to serial output and enabled Secure Shell (SSH)
for interaction.

For preparing the target driver at system boot, we built a startup
routine that creates the device files by using the mknod utility. Since
the device initialization takes a significant amount of time when
an application opens the GPU’s device descriptor the first time, we
open it in the startup routine and keep it open. New file descriptors
can now instantly be created and used in conjunction with other
system calls, which increases the throughput.

5.1 Performance
BSOD-Syzkaller. To determine the overhead of our used coverage

method, we compare the throughput of Syzkaller when using KCOV
and breakpoint coverage. Since KCOV only supports open-source
targets, we chose to target the closely related nouveau driver for
this experiment together with the physical hardware device. We
further compare the breakpoint coverage throughput when using
edge and block modes.

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

Setup / OS Windows Linux FreeBSD
BSOD-AFL nvlddmkm.sys nvidia nvidia

BSOD-Syzkaller - nvidia, nvidia-modeset, nvidia-drm, nvidia-uvm, nouveau nvidia, nvidia-modeset
Table 1: Test matrix

KCOV bp-edge bp-block
total progs 131091 3585 28994

mean progs/min 1072 30 246
coverage 11025 7381 7041

Table 2: Syzkaller fuzzing statistics by coverage mode.

0

2x107

4x107

6x107

8x107

1x108

1.2x10
8

1.4x108

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

ex
ec
s

time

bp-block

bp-edge

Figure 8: BSOD-AFL fuzzing executions for bp-edge/bp-
block coverage modes.

Table 2 shows the statistics for the three tested modes in this
experiment and Figure 6 depicts the number of program executions.
According to the total executions, breakpoint coverage in edge
mode causes an overhead of 36x compared to KCOV, whereby the
block mode reduces the overhead to 4.5x. As expected, the block
mode involves a slower start at the beginning compared to the edge
mode due to the overhead of switching between triage phases but
quickly improves over time.

Figure 7 shows the respective program execution speed for the
three tested modes. High variance is noticeable for the KCOV curve
that is related to system reboots due to encountered crashes. Be-
cause of the higher execution speed, the fuzzer triggered crashes
more often, which resulted in a considerable penalty of multiple
reboots for that instance.

The overhead of breakpoint coverage compared to statically
instrumented binaries is quite large, but we expected this status
as it also applies to user space fuzzers. We decreased the overhead
by lowering the tracing accuracy to improve the throughput to an
acceptable value.

BSOD-AFL. We performed another evaluation to measure the
effectiveness of block coverage to reduce tracing overhead. This
time, we execute the BSOD-AFL setup on the main kernel module
with the emulated device model and compare the edge tracing and
block tracing modes.

Table 3 shows the statistics of the experiment and Figure 8 shows
the number of executions for both modes respectively. When com-
paring the total executions, we can observe the primary advantage
of block coverage since it outperforms the edge coverage mode by
a factor of 17.

0

1000

2000

3000

4000

5000

6000

7000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

th
ro

ug
hp

ut
 in

 e
xe

cs
/s

time

bp-block

bp-edge

Figure 9: BSOD-AFL fuzzing throughput for bp-edge/bp-
block coverage modes.

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

to
ta

l p
at

hs

time

bp-block

bp-edge

Figure 10: BSOD-AFL paths for bp-edge/bp-block coverage
modes.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

co
ve
ra
ge

time

bp-block

bp-edge

Figure 11: BSOD-AFL coverage for bp-edge/bp-block modes.

bp-edge bp-block
total execs 7.58M 129.29M
mean exec/s 213 4664
total paths 1447 852
coverage 4058 9800

Table 3: BSOD-AFL fuzzing statistics for bp-edge/bp-block
coverage modes.

Figure 9 shows the execution speed for both modes respectively.
The mean execution speed in block coverage mode is significantly
higher compared to the edge coverage mode. Both modes show a
high variance in the execution speeds, which is related to the code
depth of the test cases generated by the fuzzer.

For block coverage mode, the tracing cost mainly reduces down
to the overhead of providing new test cases between two executions
since each reached code location is only reported once. We can

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

clearly see when the fuzzer has caused the guest to crash based on
the times when the throughput temporarily drops to zero.

Figure 10 shows the total paths found for both modes respec-
tively. We provided 467 input seeds of dumped ioctl structures,
which defines the starting value in the origin. Both curves share an
increased slope at the beginning that continuously decreases over
time, which can be explained with an increased probability to find
new paths when starting the experiment that decreases over time
since there are fewer new paths to discover.

Generally, the number of found paths in block coverage mode
is lower than in edge coverage mode, which does not necessarily
mean that the block mode explores fewer paths. The reason is the
lower tracing granularity since the tracer reports only previously
unreached basic blocks and cannot distinguish between block tran-
sitions and identify the paths. The curve for the block coverage
mode effectively shows the number of test cases that reached at
least one new code location.

Figure 11 depicts the achieved coverage for block and edgemodes.
We can observe that both curves increase with jumps depending
on whether a test case was executed that reaches a certain number
of new code locations. If we compare total paths and coverage, we
can observe that as coverage increases, the number of total paths
increases, which is expected by definition.

It seems contradictory that the block mode explores about half
the amount of paths but more than twice the number of coverage
compared to the edge mode, due to its reduced tracing granularity.
The greatly increased throughput of the block mode pays off as it
achieves faster and more coverage compared to the edge mode.

Interestingly, the coverage in block mode suddenly jumps at
about 2 hours and 5 hours of the experiment. At the same time, the
total paths increase only minimally, which means that only a few
test cases were necessary to reach many previously unseen code
locations.

The overall achieved coverage is below the coverage reached
when running our sample application, whose exchanged data we
used as seeds for AFL. Since the minimal application already trig-
gered above 400 highly dependent ioctl system calls, it becomes
very unlikely for the fuzzer to trigger similar behavior in short
time.

The performance gain from using the block mode in this ap-
proach is higher compared to Syzkaller that must use a mixture of
block and edge modes due to the triage phase.

5.2 Scaling Using BSOD-fakedev
To run BSOD-fakedev, the tester needs to determine the PCI speci-
fications needed: the target’s hardware vendor and device IDs and
the layout of the BARs. The test device used during this work is an
NVIDIA GeForce GTX 760 with a GK104 chipset (Kepler) and 2 GB
VRAM and contains three memory regions. To work around initial
state problems with the replay device, we needed to implement
custom logic for some memory addresses to avoid unexpected data
for the driver.

To evaluate the functionality of BSOD-fakedev, the emulated
hardware device, we compare the coverage in terms of reached
basic block addresses and the throughput when fuzzing with the
physical hardware device via VFIO and the emulated device model.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

100 1000 10000 100000

co
ve

ra
ge

time in s

physical

emulated

Figure 12: Syzkaller coverage for physical/emulated hard-
ware device.

0

10

20

30

40

50

60

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

 execs/min (physical)

 execs/min (emulated)

Figure 13: Syzkaller fuzzing throughput for physical/emu-
lated hardware device.

VFIO Device Model
total progs 57450 57024

mean progs/min 17 17
overall coverage 4445 4411
exclusive coverage 451 417

Table 4: Syzkaller fuzzing statistics for physical/emulated
hardware device.

For this purpose, we have chosen the Syzkaller setup that targets
all the modules coming from the proprietary driver package.

Figure 12 shows the reached coverage for both devices in 48
hours. Both graphs progress nearly identical, starting with an in-
creased slope in the first 30 minutes until it reaches a coverage value
of about 1500. An increased slope at the beginning is typical since
all defined system calls should trigger new behavior. Afterward, the
slope continuously reduces for both graphs. Figure 13 shows the
execution speed of Syzkaller programs with the physical device and
the emulated model during the same experiment. In this case, also
both graphs behave very similarly and reach a mean throughput of
17 programs per minute, which shows that the virtual device model
involves no further overhead. Table 4 shows the final results of the
experiment. The first three rows indicate that both experiments
ran very similarly. The last row reveals the number of exclusively
reached basic blocks for the experiment after executing the test
cases in the other configuration, which indicates that some func-
tionality deviates depending on the used device. With 3994 blocks
in common, both setups reach about 90% of the same coverage
in this experiment. These insights show that the emulated device
model is suitable to replace a physical device for fuzzing purposes.
In the following, we use BSOD-fakedev for fuzzing with Syzkaller
and AFL.

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

0

1000

2000

3000

4000

5000

6000

100 1000 10000 100000 1x10
6

co
ve

ra
ge

time in s

Figure 14: Syzkaller coverage for emulated device and bp-
block in 15 days (log scale).

0

50

100

150

200

250

300

01 03 05 07 09 11 13 15

ex
ec

s/
m

in

time in days

Figure 15: Syzkaller fuzzing throughput for emulated device
and bp-block in 15 days.

BSOD-Syzkaller & fakedev. As the previous evaluations have
shown, the emulated device model reaches similar behavior without
overheads. It allows performing fuzzing on multiple VMs in parallel
without the need for specific hardware devices. We utilized this
feature and started a fuzzing campaign targeting the kernel driver
modules using the Syzkaller approach over 15 days. We executed
the fuzzing environment inside a guest on a server running an
AMD EPYC 7281 16-Core Processor. Inside the guest, we executed
Syzkaller with ten worker instances.

Figure 14 shows the reached coverage during the period of the
experiment. The coverage value exceeded 5000 within the first day.
From then on, it increased further only very slowly but continuously
over time, even on the last day of the experiment up to a total
coverage value of 5497.

Figure 15 depicts the execution speed of the programs. The mean
fuzzing execution speed during the experiment is 125 progs/min.
It shows a high variance, which has several reasons that depend
on the generated programs and active worker guests. Syzkaller
restarts the guests after running for one hour without a crash
to initialize a clean system state that results in short downtimes.
Additionally, when the fuzzer triggered previously unseen crash
reports, Syzkaller tries to reproduce them on several worker guests
from the pool. The points at which the execution speed drops
noticeable down are explainable by a reduced number of active
worker guests due to crash reproduction. Overall, while running ten
instances simultaneously, we scaled up the throughput compared to
a single instance, as shown in Figure 13, although we must consider
a penalty due to nested-virtualization.

BSOD-AFL & fakedev. We applied BSOD-AFL on the main kernel
module driver by setting upmultiple AFL instances in parallel mode.
As [13] have stated during their evaluation, the optimal parameters
used for fuzzing depend heavily on the target. Therefore, using
variations of the available parameters across fuzzing instances is
beneficial. Variations in this context include selecting different

power schedules, edge and block coverage modes, and usage of
physical and emulated devices.

On the test system, we have four cores available and thus used
four fuzzing instances. Since we have one physical GPU device
present, we attached it to the master fuzzing instance and executed
the remaining three instances with the emulated device model.
We executed the master node with the exploit power schedule,
and the secondary nodes with mmopt, cut-off-exponential coe, and
quadratic quad.

The power schedule coe and quad depend on a parameter, which
indicates the number of generated inputs that exercise the same
path as the compared seed. Additionally, coe depends on a parame-
ter, which is the average number of generated inputs that exercise a
path [3]. We execute these two instances with edge coverage mode
to provide meaningful values for these parameters. We chose to
execute the other two instances with exploit and mmopt schedules
in block coverage mode for high throughput.

The next chapter presents some findings that we encountered
during the evaluation.

5.3 Findings
Linux. During the evaluation of BSOD-AFL with the emulated

device model, we encountered multiple kernel crashes of type gen-
eral protection fault in __kmalloc, as shown in Listing 4.
1 g en e r a l p r o t e c t i o n f a u l t , p robab ly f o r non−c a n on i c a l a dd r e s s 0

x 7 b a a e a f 1 8 d f c d f 8 5 : 0000 [# 1] PREEMPT SMP KASAN NOPTI
2 RIP : 0 0 1 0 : __kmal loc +0 x18b / 0 x420

Listing 4: Excerpt of crash report

The bug is reproducible on the host system with the physical
hardware device present and causes the system to freeze and no
longer respond. The stack traces vary across multiple testings,
which indicates the root cause of the bug is triggered at an earlier
point in time and causes faults for different tasks depending on the
state of the operating system. Additionally, BSOD-AFL triggered
multiple instances of page faults and bugs in __vunmap that cause
recursive faults. During the evaluation of Syzkaller with the emu-
lated device model, it was able to uncover multiple crashes due to
NULL pointer dereference bugs.
1 BUG : k e r n e l NULL po i n t e r d e r e f e r en c e , a dd r e s s : 0000000000000008
2 RIP : 0 0 1 0 : _nv018026rm+0 x158 / 0 x1520 [n v i d i a]

Listing 5: NULL pointer dereference

Excerpts of the kernel logs are shown in Listing 5 and Listing 6.
Syzkaller successfully reproduced the crashes and generated mini-
mized C programs that trigger the bugs. We tested the reproducers
on the host system with the physical hardware device present and
verified them. The NULL pointer dereference bug causes the oper-
ating system to crash and requires a reboot for recovery.
1 BUG : KASAN : use−a f t e r − f r e e in nv_match_dev_s t a t e +0 x124 / 0 x130 [n v i d i a]
2 Read o f s i z e 8 a t addr f f f f 8 8 8 0 1 e 8 3 5 3 8 0 by t a s k c r a sh / 3 69

Listing 6: KASAN Use-After-Free

FreeBSD. We set up FreeBSD version 12.2-RELEASE and also
installed the most recent NVIDIA driver version 460.56. Since the
driver package for FreeBSD contains the same binary blobs as the

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

Windows Linux FreeBSD
BSOD-AFL NULL pointer dereferences General Protection Faults -

BSOD-Syzkaller - Use-After-Free, NULL pointer dereferences NULL pointer dereferences
Table 5: Found bug classes per fuzzer and operating system.

0

20

40

60

80

100

120

140

160

180

200

220

1 10 100 1000 10000

to
ta

l p
at

hs

time in s

Figure 16: BSOD-AFL paths for fuzzing nvlddmkm.sys on
Windows

Linux driver package, the preparation of the needed Syzkaller de-
scriptions was convenient because we could reuse the descriptions
we created for Linux. Syzkaller was able to trigger the identical
NULL pointer dereference bug that we already found in the Linux
kernel driver, as shown in Listing 5. We expected this case due to
the identical binary blobs.

Windows. We have also applied the BSOD-AFL approach for
fuzzing the most recent NVIDIA kernel driver version 461.72 for
the Windows operating system, namely nvlddmkm.sys. The prac-
ticability without any required adaptions of the setup shows the
independence of the target operating system. It does solely require
the creation of a target-specific harness for the Windows oper-
ating system. The created harness is kept very simple and only
targets the device node

BSOD: Binary-only Scalable fuzzing Of device Drivers RAID ’21, October 6–8, 2021, San Sebastian, Spain

Windows Linux FreeBSD
BSOD-AFL NULL pointer dereferences General Protection Faults -

BSOD-Syzkaller - Use-After-Free, NULL pointer dereferences NULL pointer dereferences
Table 5: Found bug classes per fuzzer and operating system.

0

20

40

60

80

100

120

140

160

180

200

220

1 10 100 1000 10000

to
ta

l p
at

hs

time in s

Figure 16: BSOD-AFL paths for fuzzing nvlddmkm.sys on
Windows

Linux driver package, the preparation of the needed Syzkaller de-
scriptions was convenient because we could reuse the descriptions
we created for Linux. Syzkaller was able to trigger the identical
NULL pointer dereference bug that we already found in the Linux
kernel driver, as shown in Listing 5. We expected this case due to
the identical binary blobs.

Windows. We have also applied the BSOD-AFL approach for
fuzzing the most recent NVIDIA kernel driver version 461.72 for
the Windows operating system, namely nvlddmkm.sys. The prac-
ticability without any required adaptions of the setup shows the
independence of the target operating system. It does solely require
the creation of a target-specific harness for the Windows oper-
ating system. The created harness is kept very simple and only
targets the device node \\.\NvAdminDevice that is accessed via
DeviceIoControl.

By using an exemplary application that accesses the device, we
captured some typical data inputs. These data revealed at which
memory offsets pointer values need to be replaced by the harness.
Furthermore, we used these data again as input seeds for AFL.

We performed the fuzzing with the physical hardware device
in one single guest with all four available cores so that AFL was
able to execute test cases with a mean execution speed of 10.7k
execs/s. BSOD-AFL uncovered a bug after about 45 minutes of
the experiment, which caused the system to crash by triggering
a Blue Screen of Death (BSoD). We investigated the input data
and classified the fault as a NULL pointer dereference bug that
a user-mode application can trigger via a single ioctl call. Then,
we manually reduced the input to the necessary bytes to create a
reproducer.

Interestingly, we triggered the bug initially in driver version
441.12 that was released over a year ago. After updating to version
456.71, the found input no longer triggered the crash. When we
started fuzzing again and added the crashing input to the initial
seeds, it took only seconds to trigger again. The new crashing input
only differs from the previous one by a single increased byte value
and is still present in the most recent driver version.

To avoid triggering the same bug multiple times during fuzzing
with the cost of rebooting the system each time, we blocklisted the

respective combination of bytes that we already identified for the
reproducer and continued fuzzing. Figure 16 shows the explored
paths over time of this experiment.

The NULL pointer deference bugs are not exploitable to gain
higher privileges but can be abused to cause a Denial of Service
(DoS). The presented findings proved that both approaches find
real existing bugs in closed-source kernel drivers to answer the
initial question.

6 CONCLUSION
BSODs instrumentation allows us to fuzz binary-only drivers with
real devices in virtual machines. We reach decent execution speed
and coverage without the need for certain hardware features, such
as Intel PT. Fuzzing the complex drivers of graphics cards yielded
a range of bugs on all tested operating systems. On top of fuzzing
with real attached devices, we were able to record and replay graph-
ics card traces using BSOD-fakedev. The virtual device emulates
parts of the device’s behavior by replaying traced MMIO interac-
tions. It enabled us to scale to additional fuzzing instances in the
cloud without the need for additional physical devices. The results
of our experiments are convincing, yielding good fuzzing speeds
and driver exploration with Syzkaller and AFL++ respectively. As
depicted in Table 5, we found multiple bugs in Windows, FreeBSD,
and Linux drivers.

AVAILABILITY
All relevant source code for BSOD is avaliable open-source at
https://github.com/0xf4b1/bsod-kernel-fuzzing.

DISCLOSURE PROCESS
We reported all found bugs to the NVIDIA Product Security Incident
Response Team. The coordinated disclosure process is ongoing.

ACKNOWLEDGMENTS
The authors would like to thank Jiska Classen for valuable feedback.

REFERENCES
[1] National Security Agency. 2019. GHIDRA. https://ghidra-sre.org
[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference (Anaheim,
CA) (ATEC ’05). USENIX Association, USA, 41.

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032–1043.
https://doi.org/10.1145/2976749.2978428

[4] Oliver Chang. 2017. Attacking the Windows NVIDIA Driver. https:
//googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-
driver.html

[5] H.D. Chirammal, P. Mukhedkar, and A. Vettathu. 2016. Mastering KVM Virtual-
ization. Packt Publishing. https://books.google.de/books?id=fAjVDQAAQBAJ

[6] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.

that is accessed via
DeviceIoControl.

By using an exemplary application that accesses the device, we
captured some typical data inputs. These data revealed at which
memory offsets pointer values need to be replaced by the harness.
Furthermore, we used these data again as input seeds for AFL.

We performed the fuzzing with the physical hardware device
in one single guest with all four available cores so that AFL was
able to execute test cases with a mean execution speed of 10.7k
execs/s. BSOD-AFL uncovered a bug after about 45 minutes of
the experiment, which caused the system to crash by triggering
a Blue Screen of Death (BSoD). We investigated the input data
and classified the fault as a NULL pointer dereference bug that
a user-mode application can trigger via a single ioctl call. Then,
we manually reduced the input to the necessary bytes to create a
reproducer.

Interestingly, we triggered the bug initially in driver version
441.12 that was released over a year ago. After updating to version
456.71, the found input no longer triggered the crash. When we
started fuzzing again and added the crashing input to the initial
seeds, it took only seconds to trigger again. The new crashing input
only differs from the previous one by a single increased byte value
and is still present in the most recent driver version.

To avoid triggering the same bug multiple times during fuzzing
with the cost of rebooting the system each time, we blocklisted the

respective combination of bytes that we already identified for the
reproducer and continued fuzzing. Figure 16 shows the explored
paths over time of this experiment.

The NULL pointer deference bugs are not exploitable to gain
higher privileges but can be abused to cause a Denial of Service
(DoS). The presented findings proved that both approaches find
real existing bugs in closed-source kernel drivers to answer the
initial question.

6 CONCLUSION
BSODs instrumentation allows us to fuzz binary-only drivers with
real devices in virtual machines. We reach decent execution speed
and coverage without the need for certain hardware features, such
as Intel PT. Fuzzing the complex drivers of graphics cards yielded
a range of bugs on all tested operating systems. On top of fuzzing
with real attached devices, we were able to record and replay graph-
ics card traces using BSOD-fakedev. The virtual device emulates
parts of the device’s behavior by replaying traced MMIO interac-
tions. It enabled us to scale to additional fuzzing instances in the
cloud without the need for additional physical devices. The results
of our experiments are convincing, yielding good fuzzing speeds
and driver exploration with Syzkaller and AFL++ respectively. As
depicted in Table 5, we found multiple bugs in Windows, FreeBSD,
and Linux drivers.

AVAILABILITY
All relevant source code for BSOD is avaliable open-source at
https://github.com/0xf4b1/bsod-kernel-fuzzing.

DISCLOSURE PROCESS
We reported all found bugs to the NVIDIA Product Security Incident
Response Team. The coordinated disclosure process is ongoing.

ACKNOWLEDGMENTS
The authors would like to thank Jiska Classen for valuable feedback.

REFERENCES
[1] National Security Agency. 2019. GHIDRA. https://ghidra-sre.org
[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference (Anaheim,
CA) (ATEC ’05). USENIX Association, USA, 41.

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032–1043.
https://doi.org/10.1145/2976749.2978428

[4] Oliver Chang. 2017. Attacking the Windows NVIDIA Driver. https:
//googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-
driver.html

[5] H.D. Chirammal, P. Mukhedkar, and A. Vettathu. 2016. Mastering KVM Virtual-
ization. Packt Publishing. https://books.google.de/books?id=fAjVDQAAQBAJ

[6] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.

https://github.com/0xf4b1/bsod-kernel-fuzzing
https://ghidra-sre.org
https://doi.org/10.1145/2976749.2978428
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://books.google.de/books?id=fAjVDQAAQBAJ

RAID ’21, October 6–8, 2021, San Sebastian, Spain Toepfer and Maier

2020. HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1201–1218. https://www.usenix.org/conference/usenixsecurity20/presentation/
clements

[7] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware
Fuzzing for Kernel Drivers. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2123–2138.
https://doi.org/10.1145/3133956.3134069

[8] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
1497–1511. https://doi.org/10.1109/SP40000.2020.00009

[9] Brendan Dolan-Gavitt, Josh Hodosh, P. Hulin, T. Leek, and R. Whelan. 2014.
Repeatable Reverse Engineering for the Greater Good with PANDA.

[10] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan.
2015. Repeatable Reverse Engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop (Los Angeles, CA, USA)
(PPREW-5). Association for Computing Machinery, New York, NY, USA, Article
4, 11 pages. https://doi.org/10.1145/2843859.2843867

[11] David Drysdale. 2016. Coverage-guided kernel fuzzing with syzkaller. https:
//lwn.net/Articles/677764/

[12] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1237–1254. https://www.usenix.org/conference/usenixsecurity20/presentation/
feng

[13] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

[14] Google. [n.d.]. honggfuzz. https://honggfuzz.dev
[15] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry,

Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, and Giovanni Vigna. 2019. Toward the Analysis of Embed-
ded Firmware through Automated Re-hosting. In 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2019). USENIX Associa-
tion, Chaoyang District, Beijing, 135–150. https://www.usenix.org/conference/
raid2019/presentation/gustafson

[16] Sami Tolvanen Jeff Vander Stoep. 2018. Android Kernel Security. https://events19.
linuxfoundation.org/wp-content/uploads/2017/11/LSS2018.pdf

[17] Tim Newsham Jesse Hertz. 2016. Project Triforce. https://raw.githubusercontent.
com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf

[18] Richard Johnson. 2017. Evolutionary Kernel Fuzzing. https://www.fuzzing.
io/Presentations/Evolutionary%20Kernel%20Fuzzing-BH2017-rjohnson-
FINAL.pdf

[19] Michael Kerrisk. 2013. LCA: The Trinity fuzz tester. https://lwn.net/Articles/
536173/

[20] Marcelina Kościelnicka. 2013. envytools. https://envytools.readthedocs.io/en/
latest/index.html

[21] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. 2010. Testing
Closed-Source Binary Device Drivers with DDT. In Proceedings of the 2010 USENIX
Conference on USENIXAnnual Technical Conference (Boston,MA) (USENIXATC’10).
USENIX Association, USA, 12.

[22] Tamas K Lengyel. 2015. LibVMI: Simplified Virtual Machine Introspection. https:
//libvmi.com

[23] Tamas K Lengyel. 2020. VM Forking and Hypervisor-based Fuzzing.
https://static.sched.com/hosted_files/xen2020/bc/XPDS2020%20-%20VM%
20forking%20and%20Hypervisor%20Based%20Fuzzing.pptx

[24] Dominik Maier, Benedikt Radtke, and Bastian Harren. 2019. Unicorefuzz: On
the Viability of Emulation for Kernelspace Fuzzing. In 13th USENIX Workshop
on Offensive Technologies (WOOT 19). USENIX Association, Santa Clara, CA.
https://www.usenix.org/conference/woot19/presentation/maier

[25] MITRE. 2017. Common Vulnerabilities and Exposures. https://cve.mitre.org
[26] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.

Avatar 2 : A Multi-Target Orchestration Platform. https://doi.org/10.14722/bar.
2018.23017

[27] S. Nagy and M. Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing Overhead
through Coverage-Guided Tracing. In 2019 IEEE Symposium on Security and
Privacy (SP). 787–802. https://doi.org/10.1109/SP.2019.00069

[28] NIST. 2017. NVD National Vulnerability Database. https://nvd.nist.gov
[29] Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB

Drivers by Device Emulation. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 2559–2575. https://www.usenix.org/conference/
usenixsecurity20/presentation/peng

[30] I. Pustogarov, Q. Wu, and D. Lie. 2020. Ex-vivo dynamic analysis framework
for Android device drivers. In 2020 IEEE Symposium on Security and Privacy (SP).
1088–1105. https://doi.org/10.1109/SP40000.2020.00094

[31] Nguyen Anh Quynh. 2014. Capstone. http://www.capstone-engine.org
[32] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. 2012. SymDrive:

Testing Drivers without Devices. In 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 12). USENIX Association, Hollywood,
CA, 279–292. https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/renzelmann

[33] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. KAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In Proceedings of the 26th USENIX Conference on Security Symposium (Vancouver,
BC, Canada) (SEC’17). USENIX Association, USA, 167–182.

[34] Kostya Serebryany. [n.d.]. libFuzzer – a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html

[35] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the
Hardware-OS Boundary. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/periscope-an-
effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/

[36] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent ByungHoon Kang, Jean-
Pierre Seifert, and Michael Franz. 2020. Agamotto: Accelerating Kernel Driver
Fuzzing with Lightweight Virtual Machine Checkpoints. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 2541–2557. https://www.
usenix.org/conference/usenixsecurity20/presentation/song

[37] Mathieu Tarral. 2019. KVM-based Virtual Machine Instrospection. https://github.
com/KVM-VMI

[38] Ryan Whelan, Tim Leek, and David Kaeli. 2013. Architecture-Independent
Dynamic Information Flow Tracking. In Compiler Construction, Ranjit Jhala and
Koen De Bosschere (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 144–
163.

[39] Michał Zalewski. 2013. american fuzzy lop. https://lcamtuf.coredump.cx/afl/
[40] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min. 2018. PTfuzz: Guided Fuzzing

With Processor Trace Feedback. IEEE Access 6 (2018), 37302–37313. https:
//doi.org/10.1109/ACCESS.2018.2851237

[41] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1099–1114. https://www.
usenix.org/conference/usenixsecurity19/presentation/zheng

https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1145/2843859.2843867
https://lwn.net/Articles/677764/
https://lwn.net/Articles/677764/
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://honggfuzz.dev
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/LSS2018.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/11/LSS2018.pdf
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://raw.githubusercontent.com/nccgroup/TriforceAFL/master/slides/ToorCon16_TriforceAFL.pdf
https://www.fuzzing.io/Presentations/Evolutionary%20Kernel%20Fuzzing-BH2017-rjohnson-FINAL.pdf
https://www.fuzzing.io/Presentations/Evolutionary%20Kernel%20Fuzzing-BH2017-rjohnson-FINAL.pdf
https://www.fuzzing.io/Presentations/Evolutionary%20Kernel%20Fuzzing-BH2017-rjohnson-FINAL.pdf
https://lwn.net/Articles/536173/
https://lwn.net/Articles/536173/
https://envytools.readthedocs.io/en/latest/index.html
https://envytools.readthedocs.io/en/latest/index.html
https://libvmi.com
https://libvmi.com
https://static.sched.com/hosted_files/xen2020/bc/XPDS2020%20-%20VM%20forking%20and%20Hypervisor%20Based%20Fuzzing.pptx
https://static.sched.com/hosted_files/xen2020/bc/XPDS2020%20-%20VM%20forking%20and%20Hypervisor%20Based%20Fuzzing.pptx
https://www.usenix.org/conference/woot19/presentation/maier
https://cve.mitre.org
https://doi.org/10.14722/bar.2018.23017
https://doi.org/10.14722/bar.2018.23017
https://doi.org/10.1109/SP.2019.00069
https://nvd.nist.gov
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://doi.org/10.1109/SP40000.2020.00094
http://www.capstone-engine.org
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/renzelmann
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/renzelmann
https://llvm.org/docs/LibFuzzer.html
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://github.com/KVM-VMI
https://github.com/KVM-VMI
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/ACCESS.2018.2851237
https://doi.org/10.1109/ACCESS.2018.2851237
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

	Abstract
	1 Introduction
	2 Background
	2.1 Kernel Driver Attack Surface
	2.2 NVIDIA Kernel Driver
	2.3 Related Work

	3 BSOD Design
	3.1 BSOD-AFL
	3.2 BSOD-Syzkaller

	4 PCI Device Record & Replay
	4.1 PANDA-based Deterministic Recordings
	4.2 BSOD-fakedev

	5 Evaluation
	5.1 Performance
	5.2 Scaling Using BSOD-fakedev
	5.3 Findings

	6 Conclusion
	Acknowledgments
	References

